
TNM078, Image Based Rendering
Jonas Nilsson,
Camilla Kemppainen
LiU, Campus Norrköping
2007-02-17

HDR tone-mapping in real time
- on NVIDIA 6800 light edition, 128 Mb memory.

Abstract:

As one of the examination step in the course Images Based Rendering, TNM078, a
project about tone-mapping for HDR images in real time was implemented. Different
operators were used such as S-curve, Rahman Retinex, Global Average, Logarithmic,
Chiu's spatially variant operator. Also bloom effect was implemented. Best result gave
the S-curve, which preserved details in both light and dark regions. Rahman Retinex
was believed to give the best result since it is a local tone-mapping operator but did not
preserve details in very bright regions. The shader language used was OpenGL shading
language and the graphic card used was a NVIDIA 6800 light edition with 128 Mb
memory.

Index
1. Introduction..3

1.1 Purpose..3
1.2 Background... 3

2. Shaders...4
3. Tone-mapping algorithms..6

3.1 Global average.. 6
3.2 S-Curve... 6
3.3 Logarithmic mapping.. 7
3.4 Chiu's Spatially variant operator... 7
3.5 Rahman Retinex.. 7
3.6 Bloom..9

4. User manual... 10
5. Results..11
6. Discussion.. 12
7. References..13
Appendix 1. Tone-mapped images.. 14

1. Introduction

1.1 Purpose

In the course TNM078, Image Based Rendering, one of the examinations step consisted
of making a project based on advanced, published work in the field of High Dynamic
Range Imaging. The idea of HDR tone-mapping in real time was implemented with
different kinds of tone-mapping operators.

1.2 Background

In computer graphic the goal is to give each object in a scene certain properties. This
could be done by giving an object in a scene a certain appearance by mapping a texture to
the object. In this project High Dynamic Range, HDR, images was used as textures. HDR
images are images with a lot of light information about the scene which gives a more
accurate representation of the real world than Low Dynamic Range, LDR, images. The
HDR textures were in angular format which made it appropriate to map them on a sphere.
This enables the user to look around and see all direction when standing in the centre of
the sphere. It could be called HDR panoramic viewer.

At the moment LDR images are more commonly used but HDR images are gaining
acceptance in the film industry, photography and computer graphics and soon all the
LDR displays will be replaced with HDR displays.

The process that maps textures to objects can be very computational heavy and to speed
up this process this can be done for each pixel on the GPU, the graphic hardware, instead
of using the CPU. Then the CPU will be free to handle other tasks or user commands and
the application can render in real time, which is very important for example for video
games. This is implemented by writing a so called shader and there are different shader
languages that can be used. For this project OpenGL's shading language was utilized.

Since all displays used at the moment are LDR displays the HDR images and textures has
to be mapped in someway to make it possible to view them on the displays. In this project
following tone-mapping methods were tested s-curve, global mean, logarithmic, Chiu's
spatially variant operator and Rahman Retinex. The tone-mapping algorithms were
executed in real time. Also a bloom effect was implemented to give the impression of that
very bright areas are glowing.

The program has been tested on NVIDIA 6800 light edition, 128 Mb memory.

2. Shaders
A shader in the field of computer graphics is a set of software instruction, which is used
by the graphic resources primarily to perform rendering effects. From a technical view a
shader is a part of the renderer, which is responsible from calculating the color of an
object1. The type of shader used in this project was pixel/fragment shader, which enables
computations of colors, and texture coordinates per pixel. The inputs for the pixel shader
are the interpolated values computed in the vertex shader such as vertex positions, colors,
normals, etc. Therefore a vertex shader was needed as well. In the vertex shader these
values are computed for each vertex. The pixel shader deals with the fragments inside the
primitives, consequently the interpolated values are needed2.

The original floating point HDR texture was generated from a RAW-file with float values
or from the .hdr format by using code found in an NVIDIA demo3. In OpenGL the
texture unit has to be specified to store floating point values, a feature only available on
newer graphic cards. The format used was 16-bits per channel, and for this project the
RGB channels was used.

To be able to do tone-mapping on the rendered image a feature in OpenGL has to be
used, which copies the rendered from the framebuffer to a texture. This texture is then
mapped to a quad covering the whole screen. When rendering this quad a fragment
shader was used to compute the tone-mapped image using different known image
processing techniques.

The framebuffer is the final step in the graphics pipeline. And most framebuffers uses an
8-bit format to store the RGBA values. Features in OpenGL was studied which enables
the use of floating-point framebuffers. Since the features were not easily enabled and
perhaps not possible to implement on the graphic card used. Was the RGBE-format used
for rendering to the framebuffer. This approach only uses the 8-bit RGBA values
available in the framebuffer, but needs a second fragment shader in the rendering process
to transform the values between floating-points and RGBE.

To be able to load the texture to the buffer in the graphic card a transformation from the
floating-point format, the format of the textures when loaded into the program, to the
RGBE-format had to be done. This transformation was done with the following
equations:

E=[log2max R w , Gw , B w128]

R M=[
256∗R w

2E−128]

1 Shader, [www], <http://en.wikipedia.org/wiki/Shader>, 14th of March 2007
2 GSL Tutorial, [www], <http://www.lighthouse3d.com/opengl/glsl/index.php?fragmentp> 14th of March
2007
3 Walter, Bruce, RGBE loading program, [www], <bjw@graphics.cornell.edu> 16th of March 2007

http://en.wikipedia.org/wiki/Shader
mailto:bjw@graphics.cornell.edu
http://www.lighthouse3d.com/opengl/glsl/index.php?fragmentp
http://www.lighthouse3d.com/opengl/glsl/index.php?fragmentp

G M=[
256∗G w

2E−128]

B M=[
256∗B w

2 E−128]

The parentheses for E ought to be roof-parentheses and for RM , GM , BM ought to be
floor-parentheses. In the book High Dynamic range imaging, acquisition, display and
image based lighting says that a base two should be used but it did not work in the reality,
since it conveyed in artifacts in the picture. In the searching for solution to this problem
did we found an old GDC presentation4 explaining that a higher value of the exponent
leads to higher dynamic range but lower resolution (since there will be more dynamic
range values per integer value) and Mach banding can become visible. Because of this
was the exponent 2 in the above equations changed to 1.05. A value of 1.05 means a
dynamic range of 1.05^256, enough range for our textures. To get back to the floating-
point format, which was used in the tone-mapping, following equations was used:

Rw=
RM0.5

256
∗2E−128

G w=
G M0.5

256
∗2E−128

B w=
B M0.5

256
∗2E−128

Here the base 1.05 was used again since it is necessary to use the same base in both
transformations to keep it uniform as well as it worked better than with the base 2 as
mentioned earlier.

Three different fragment shaders were used in each rendering pass. The first is applied
when rendering the scene, with the floating point texture mapped to the sphere. That
shader calculates the RGBE value for each fragment, and returns those values as an
RGBA color. These values are stored in the framebuffer and copied to a texture unit. A
small quad is then rendered with the second shader. This shader applies a Gaussian filter
on the texture and returns the RGBA values. The resulting framebuffer part covering the
quad is copied to a new texture. By applying the second shader on larger quads, less
blurred version of the image can be received. At last a big quad is rendered, covering the
whole window, with the tone-mapping shader enabled. This shader takes the generated
textures, calculates the floating point value from the textures RGBE value and applies the
tone-mapping technique of choice.

4 (2004), Game developer conference, [www],
<http://www.daionet.gr.jp/~masa/archives/GDC2004/GDC2004_PIoHDRR_SHORT_EN.ppt>, 16th of
March 2007

http://www.daionet.gr.jp/~masa/archives/GDC2004/GDC2004_PIoHDRR_SHORT_EN.ppt

3. Tone-mapping algorithms

3.1 Global average

When the global average was used as a tone-mapping operator each pixel was simply
divided by the global average. To decide the global mean the lowest mipmap-level,
which is one pixel in size, was used and should be close to the global mean value for the
texture. The computation was implemented for each colour channel.

mean = tex_RGBE(envTexture, vec2(gl_TexCoord[0]),10)*exposure;
color.r = color.r / mean.r;
color.g = color.g / mean.g;
color.b = color.b / mean.b;

3.2 S-Curve

The response curve for rods and cones in the eye can be described with following
equation:

R
Rmax

= I n

 I nsigma n

R is photoreceptor response in the interval 0 < R < Rmax. Rmax is the maximum response
and I is the light intensity and sigma is the semisaturation constant, the intensity that
causes the half-maximum response. And finally n is a sensitivity exponent that has a
value generally between 0.7 and 1.0. On a log-linear plot this equation is shaped as an S5.
Sigma controls the position of the S-curve on the horizontal axis. This curve was used to
tone-mapp the HDR images.

The tone-mapping procedure was done on each colour channel and the value for sigma
was decided from the lowest level of the mipmap which is one pixel in size and ought to
be close to the global average for the image.

color.r = color.r / (color.r + mean.r);
color.g = color.g / (color.g + mean.g);
color.b = color.b / (color.b + mean.b);

5 Reinhard, Erik, et al, (2006), High Dynamic Range Imaging acquisation, Display and image-based
lighting, page 198.

3.3 Logarithmic mapping

The simplest non-linear mapping is to do a logarithmic mapping. In this project following
equation was used to do a logarithmic mapping6:

L d  x , y =
log 101L wx , y 
log 101Lmax x , y 

Lmax is simple the highest value in each colour channel since this operator also was coded
channel wise.

3.4 Chiu's Spatially variant operator

Chiu et al noticed that artists often make use of spatially varying techniques to fool the
eye into thinking that a much larger dynamic range is present in artwork then actually
exists. In particularly, the areas around bright features may be dimmed to accentuate
them. The Chiu operator simply multiplies the image with a local scale factor meaning
that it depends on the pixel value it self and a surrounding neighbourhood. To make the
scale factor represent a local average a low-pass filtered image of the original is
produced. In a blurred image each pixel represents a weighted local average of the pixel
in the corresponding position of the original. To compress the image following equation
was implemented7:

L d x , y = 1
k∗Lw

blur x , y 
∗L wx , y 

The blur was created with a Gaussian filter kernel.

3.5 Rahman Retinex

Rahman Retinex is a local tone-mapping operator, which means that it computes a local
adaptation level for a pixel based on its pixel value itself as well as a neighbourhood
surrounding the pixel of interest. The neighbourhood decides how a pixel is compressed
therefore a very bright pixel in a dark neighbourhood is treated differently than a very
bright pixel in a bright neighbourhood8. To create this local neighbourhood of adaptation
a Gaussian filter is used and convolved with the image. Since the operator works
independently on each colour channel, r,g, and b the convolution is done three times9.
There are two different versions of Rahman Retinex, a single-scale and a multiscale-

6 Reinhard, Erik, et al, (2006), High Dynamic Range Imaging acquisation, Display and image-based
lighting, Page 252
7 Reinhard, Erik, et al, (2006), High Dynamic Range Imaging acquisation, Display and image-based
lighting, Page 278.
8 Reinhard, Erik, et al, (2006), High Dynamic Range Imaging acquisation, Display and image-based
lighting, Page 223
9 Reinhard, Erik, et al, (2006), High Dynamic Range Imaging acquisation, Display and image-based
lighting, Page 282

version. In the multi-scale version the equation for single-scale is repeated several times
for Gaussians filters with different kernel sizes. The multiscale retinex version is then
simple the weighted sum of a set of single-scale retinex images.10.

w n=
N −n1 f

∑
n=0

N

N −m1 f

I d x , y =e
∑
n=0

N

wn∗logI w x , y −k∗logIw , n
blur  x , y

The parameters f and k are user parameters and f adjusts the relative weighting for the
image divided with each blurred image. The equation says original minus the blurred
image but the operation is done in the logarithmic domain which represents a division.
The value of k specifies the relative weight of the blurred image. The multiscale version
was implemented in this project. But instead of doing filtering with different sizes of
Gaussian filter kernels the original image was downscaled to six different sizes and these
were then filtered with the same Gaussian filter kernel.

const float gauss[5] = {1.0/273.0,4.0/273.0,7.0/273.0,26.0/273.0,41.0/273.0};
outcolor = color / (k*tex_RGBE(blur1, vec2(gl_TexCoord[0]),0));

To use the existing mipmaps in the graphic card as different scales of the texture was
tried out but it caused artifacts, shaped like stars, so instead different scales of the texture
was sent to the shader. Examples on the internet described this way to do the filtering
rather than to use the mipmaps11.

Still the filtering method is not perfect since the image appear to be “blockish” which is
hard to understand why. After all OpenGL does a linear interpolation when down-scaling
the texture.

10 Reinhard, Erik, et al, (2006), High Dynamic Range Imaging acquisation, Display and image-based
lighting, Page 282.
11 How to do good bloom for HDR rendering, [www], <http://harkal.sylphis3d.com/2006/05/20/how-to-do-
good-bloom-for-hdr-rendering/>, 16th of March 2007.

http://harkal.sylphis3d.com/2006/05/20/how-to-do-good-bloom-for-hdr-rendering/
http://harkal.sylphis3d.com/2006/05/20/how-to-do-good-bloom-for-hdr-rendering/

3.6 Bloom

To create the effect that very bright areas seem to be glowing, a bloom effect was
implemented. This was done in the same way as the Gaussian blur in the Rahman Retinex
tone-mapping operator. Different scales of the texture was filtered with a Gaussian filter
kernel and then weighted and combined together with the original to get the bloom effect.
An image with bloom effect still needs to be tone-mapped to be adjusted to the display’s
lower dynamic range. At the moment one large filter kernel is being used but if the
program runs too slowly the filter kernel could be separated to two one dimensions filter
kernel. Then the filtering would be done in horizontal and vertical direction. The bloom
effect should only appear in very bright areas otherwise it gives the image a very dreamy
appearance, which could be good if that is what, is asked for. Since the blooming
operator is not a complete tone-mapping algorithm, both the blurred and the original
image needed to be tone-mapped before display and this was done with the S-curve.

4. User manual
The requirements for the system are a GLSL enabled graphic card, which can handle 16-
bit floating-points textures. Furthermore the textures must be located in a correct folder.
It is possible to change the exposure on the texture by clicking the + and – buttons on the
keyboard. The mouse can be used to navigate in the sphere. To rotate the left button
should be pressed and the mouse moved. To zoom the middle button is pressed and the
mouse dragged. When the right mouse button is pressed a menu will be displayed where
items can be selected by pressing the left button.

Following items will appear in the menu list:

 Autorotation causes the sphere to automatically rotate, nice for displaying
the program.

 Texture menu where the texture for display can be chosen.
 Tone-mapping menu where tone-mapping operator can be chosen.
 Reload the shader file, if changes was made in the shader file.

5. Results
When using the global average operator it can not preserve the dynamic range. Details
are lost in very bright areas (see appendix 1, figure 1). The S-curve operator represent
bright areas very well and very dark areas are rather good (see appendix 1, figure 2).
Rahman Retinex was the method which was believed to be the best one due to the fact
that it is a local tone-mapping operator and the others are global tone-mapping operator.
It failed in very bright areas where details were lost but gave the best result in very dark
areas of all the operators implemented in this project. Rahman Retinex is probably very
good in still images where the local neighbourhood is fixed. Somehow artefacts in the
shape of blue splashes appeared in very dark regions. Chiu spatially variant operator
almost gave the same results as Rahman, but with a more noticeable haloing effect
around edges. The logarithmic tone-mapping gave almost the same effect as the S-curve
but reduced the framerate to 10 frames per second while running the s-curve the
framerate was between 10-70 frames per second depending on the texture.

6. Discussion
From what can be seen from the results the s-curve is the best tone-mapping operator
implemented in this project. It can preserve details in both dark and bright areas and at
the same time it runs rather fast and smooth.

The blooming effect can also be implemented, with caution, as it looks nice and is fast to
compute (See Appendix 1, figure 4).

There are a lot of problems related to the internal functions of the graphic card and the
OpenGL method used. The strange blue artefacts in the Rahman Retinex implementation
and the artefacts appearing when using an exponent 2 in the RGBE calculations can be
effects caused by some part of the graphic pipeline that the group members did not have
control over. Most functions of the graphic card have corresponding OpenGL methods,
but since most of these are OpenGL extensions, the documentations is hard to find and
difficult to understand.

Newer graphic hardware and software will support floating-point framebuffers and HDR
textures without problems and should make tone-mapping more flexible.

7. References

• Reinhard, Erik, et al, (2006), High Dynamic Range Imaging acquisation, Display
and image-based lighting.

• How to do good bloom for HDR rendering, [www],
<http://harkal.sylphis3d.com/2006/05/20/how-to-do-good-bloom-for-hdr-
rendering/>, 16th of March 2007.

• (2004), Game developer conference, [www],
<http://www.daionet.gr.jp/~masa/archives/GDC2004/GDC2004_PIoHDRR_SHO
RT_EN.ppt>, 16th of March 2007.

• Walter, Bruce, RGBE loading program, [www], <bjw@graphics.cornell.edu>
16th of March 2007.

• GSL Tutorial, [www],
<http://www.lighthouse3d.com/opengl/glsl/index.php?fragmentp> 14th of March
2007.

• Shader, [www], <http://en.wikipedia.org/wiki/Shader>, 14th of March 2007.

http://en.wikipedia.org/wiki/Shader
http://www.lighthouse3d.com/opengl/glsl/index.php?fragmentp
http://www.lighthouse3d.com/opengl/glsl/index.php?fragmentp
http://www.lighthouse3d.com/opengl/glsl/index.php?fragmentp
mailto:bjw@graphics.cornell.edu
mailto:bjw@graphics.cornell.edu
mailto:bjw@graphics.cornell.edu
mailto:bjw@graphics.cornell.edu
http://www.daionet.gr.jp/~masa/archives/GDC2004/GDC2004_PIoHDRR_SHORT_EN.ppt
http://www.daionet.gr.jp/~masa/archives/GDC2004/GDC2004_PIoHDRR_SHORT_EN.ppt
http://harkal.sylphis3d.com/2006/05/20/how-to-do-good-bloom-for-hdr-rendering/
http://harkal.sylphis3d.com/2006/05/20/how-to-do-good-bloom-for-hdr-rendering/

Appendix 1. Tone-mapped images

Figure1: Mean

Figure 2: S-curve

Figure 3: Rahman Retinex

Figure 4: Bloom and S-curve

	1. Introduction
	1.1 Purpose
	1.2 Background

	2. Shaders
	3. Tone-mapping algorithms
	3.1 Global average
	3.2 S-Curve
	3.3 Logarithmic mapping
	3.4 Chiu's Spatially variant operator
	3.5 Rahman Retinex
	3.6 Bloom

	4. User manual
	5. Results
	6. Discussion
	7. References
	Appendix 1. Tone-mapped images

